Treatment Patterns of Anti-Vascular Endothelial Growth Factor and Laser Therapy Among Patients with Diabetic Macular Edema

Shan Jiang, PhD; Jamie C. Barner, PhD; Chanyun Park, MS; and You-Li Ling, MS

ABSTRACT

BACKGROUND: Diabetic macular edema (DME) is a form of diabetic retinopathy caused by continued leakage from retinal blood vessels. The use of anti-vascular endothelial growth factor (VEGF) injections has gained in popularity in the treatment of DME due to satisfactory efficacy, while laser photocoagulation is still the first-line therapy. Examining anti-VEGF treatment patterns may improve understanding of real-world medication-taking behaviors.

OBJECTIVES: To (a) compare demographic and clinical characteristics and treatment patterns of anti-VEGF (bevacizumab, ranibizumab, and pegaptanib) and laser therapies among DME patients and (b) determine predictors of switching and anti-VEGF therapy initiation.

METHODS: A retrospective cohort analysis was conducted with Texas Medicaid medical and prescription claims (January 1, 2008–December 31, 2012) for patients who were aged 18–63 years, continuously enrolled 1 year pre- and post-index, diagnosed with DME and treated with anti-VEGF or laser therapies. Treatment patterns included treatment frequency and switching between anti-VEGF and laser therapies. Logistic regression and multinomial analysis were used to determine factors associated with switching and initiation of anti-VEGF therapy, while controlling for demographic and clinical characteristics.

RESULTS: DME patients (N = 2,201) were aged 54.7 (SD ± 7.9) years; 63.1% were female; 59.1% were Hispanic; and 10.3% were visually impaired. CCI mean score was 6.5 (SD ± 3.1), and patients were on 2.6 (SD ± 3.3) unique prescription medications. Anti-VEGF users had significantly (P < 0.0001) fewer prescriptions compared with laser users (1.9 [SD ± 3.1] vs. 2.8 [SD ± 3.3], respectively). Laser was the most commonly used (84.9%) therapy from 2009 to 2011; however, anti-VEGF use increased from 11.7% in 2009 to 21.8% in 2011 (P < 0.0001). Patients received 1.5 (SD ± 0.7) laser surgeries compared with 1.7 (SD ± 1.1) anti-VEGF injections per eye annually. Switching from laser to anti-VEGF injections was 9.7%, while switching from anti-VEGF injections to laser surgery was 42.2%. Patients who switched from anti-VEGF injections to laser surgery were more likely to be Hispanic (OR = 1.415, 95% CI = 1.037–1.930); male (OR = 1.341, 95% CI = 1.053–1.709); have fewer prescriptions (OR = 0.944, 95% CI = 0.905–0.985); and less likely to have no visual impairment (OR = 0.641, 95% CI = 0.449–0.915). Multinomial regression results showed anti-VEGF users were more likely to remain on the same therapy if they had more prescriptions (OR = 1.094, 95% CI = 1.029–1.172) or were female (OR = 1.441, 95% CI = 1.024–2.041). Anti-VEGF initiators had fewer prescriptions (OR = 0.917, 95% CI = 0.868–0.947) and initiated in 2011 vs. 2009 (OR = 2.363, 95% CI = 1.777–3.141).

CONCLUSIONS: Although anti-VEGF use is increasing, laser use is still more prevalent. Over 40% of patients who initiated on anti-VEGF injections switched to laser surgery. Additional research should be conducted to determine factors associated with this high rate of switching.

What is already known about this subject

- Suboptimal outcomes from diabetic macular edema (DME) can lead to blindness, which is costly to the health care system. Laser surgery is the first-line treatment for DME.
- Ranibizumab was approved to treat age-related macular edema (AMD) in 2006 and DME in 2012.
- One study has shown an increase in use of anti-vascular endothelial growth factor (VEGF) among AMD patients. Anti-VEGF therapies have been shown by clinical trials to be effective in treating DME.

What this study adds

- This study is the first to use large claims data to determine the real-world treatment patterns of DME.
- Laser surgery was still more prevalent than anti-VEGF injections from 2009 to 2011 among patients with DME. The use of anti-VEGF injections increased from 2009 to 2011.
- Our study showed suboptimal use of anti-VEGF (<2 injections/year) and a high rate of switching from anti-VEGF therapy to laser therapy. Multinomial analysis found that female patients and patients with more prescriptions are more likely to stay on the same therapy.

D}iabetic macular edema (DME) is a form of diabetic retinopathy caused by continued leakage from retinal blood vessels.1 Laser photocoagulation and anti-vascular endothelial growth factor (VEGF) injections are common treatment choices for DME.2 Laser (focal/grid) photocoagulation is the standard therapy for DME patients with visual impairment.3 Anti-VEGF treatment is a type of eye injection that causes VEGF inhabitation and prevents the formation of abnormal blood vessels and slows down the progression of DME. It is also used to treat age-related macular degeneration (AMD) and retinal vein occlusion.4,5 The use of anti-VEGF injections has gained in popularity due to satisfactory efficacy. Ranibizumab (Lucentis) was approved in August 2012 as an anti-VEGF therapy for DME. Clinical trials (RISE and RIDE) have shown advantages over laser therapy in preventing vision loss and improving visual acuity.6 However, the American Academy of Ophthalmology guidelines have recommended laser therapy as first-line treatment.3 The 2013 National Institute for Health and Clinical Excellence guidelines have

Copyright © 2015, Academy of Managed Care Pharmacy. All rights reserved.
recommended the use of ranibizumab as a treatment option for DME patients when central retinal thickness is greater than 400 micrometers.7

In a study that examined costs of DME among the elderly (treated and not treated), Shea et al. (2008) showed that laser therapy decreased from 43% in 2000 to 30% in 2004.8 Treatment patterns of anti-VEGF therapy among AMD patients have been evaluated in Medicare and commercial insurance populations.9,10 An increase in use of anti-VEGF therapy was detected, but monthly treatment was rare and discontinuation was high. Bevacizumab (Avastin) was the most commonly used anti-VEGF therapy among Medicare beneficiaries with AMD.9 Examining anti-VEGF treatment patterns may improve understanding of real-world medication-taking behaviors. Additionally, it will provide insight to ophthalmologists and other health care practitioners on anti-VEGF use, including regimen and treatment initiation and discontinuation. However, there is little information regarding how anti-VEGF therapy has been used for treating DME, especially for bevacizumab, which is used off label.3,11 A unique aspect of our study is the focus on the nonelderly Medicaid population. The objectives for this study were to (a) describe and compare demographic and clinical characteristics and treatment patterns (treatment frequency and switching) of anti-VEGF injections and laser photocoagulation among DME patients and (b) determine factors associated with switching and anti-VEGF therapy initiation.

Methods

Data Sources and Study Population

This is a retrospective secondary database study utilizing Texas Medicaid medical and prescription claims. Fee-for-service and managed care claims data from January 1, 2008, to December 31, 2012, were obtained for all Texas Medicaid beneficiaries with a diagnosis of DME. The International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes 362.07 (diabetic macular edema), 362.53 (cystoid macular degeneration), and 362.82 (retinal exudates and deposits) were used to identify DME patients from outpatient and inpatient claims. Newly treated patients (no treatment of anti-VEGF, laser, or steroids during the 1-year pre-index period) were selected from January 1, 2009, to December 31, 2011 (i.e., selection period). The earliest date within the selection period indicating anti-VEGF or laser treatment was selected as the index date. One-year pre-index and 1-year post-index periods were assigned to each patient. Patients continuously enrolled for 1-year pre- and post-index and those aged 18-63 years were included. The age limit of 63 years was used to avoid patients who were eligible for Medicaid/Medicare and because everyone was followed for 1 year. Patients were excluded if diagnosed with both AMD (ICD-9-CM code 362.52 [exudative senile macular degeneration], 362.42 [serous detachment of retinal pigment epithelium], and 362.43 [hemorrhagic detachment of retinal pigment epithelium]) and DME, treated with steroids, or identified as being treated with combination therapy. Because bevacizumab is also used to treat metastatic colorectal cancer, non-small cell lung cancer, metastatic renal cell carcinoma, and glioblastoma with progressive disease, patients with those conditions were also excluded.

Study Variables

Treatment patterns included treatment frequency and switching between anti-VEGF and laser treatment. Treatment frequency
was defined as the number of anti-VEGF and laser therapies 1-year post-index. The Current Procedural Terminology (CPT) and Healthcare Common Procedure Coding System (HCPCS) codes used to identify treatments are listed in Table 1. Bevacizumab and ranibizumab were coded as unclassified drugs or biologics in an overlapped period. To separate them, a combination of code (J3490, J3590) and costs were used. Bevacizumab usually has a payment between $1-$100, and ranibizumab has a higher payment between $1,500-$2,000. Modifier codes for injections indicating right or left eye were used to determine whether patients were treated in 1 eye or 2 eyes. Switching between anti-VEGF therapy and laser therapy was defined as changing from the index treatment to the other therapy. The change must have occurred after 21 days from the last index treatment. If switching occurred prior to 21 days, it was identified as a combination therapy. Switching rate was calculated as the number of patients who switched from the index therapy divided by the total number of patients who initiated that therapy. The rationale for using 21 days for combination therapy is that injections are typically given on a monthly basis, and any additional medications within 3 weeks were most likely used in combination with the index therapy. Independent variables included patient characteristics (age, gender, and race), Charlson Comorbidity Index score (CCI), number of unique medications, and visual impairment. CCI was calculated using the Deyo adaption. Number of unique medications was defined as the total number of different medications per patient at index date. To identify patients with visual impairments, ICD-9-CM codes 368.xx and 369.xx were used as well as patients who received Supplemental Security Income for blindness (category = 4).

Data Analysis

Descriptive statistics and t-test, Wilcoxon, and chi-square statistics were used to compare the demographic and clinical characteristics between anti-VEGF and laser users. Chi-square
was used to compare the use of therapies from 2009 to 2011. Multinomial regression and logistic regression were used to predict switching and initiation of anti-VEGF therapy, while controlling for demographic and clinical characteristics. All analyses used an alpha value of 0.05.

Results

A final cohort of 2,201 patients was included in the study (Figure 1). Mean (standard deviation [SD]) age of patients was 54.7 (SD ± 7.9) years; 63.1% were female; 59.1% were Hispanic; and 10.3% were visually impaired. CCI mean score was 6.5 (SD ± 3.1). Patients were using 2.6 (SD ± 3.3) unique prescriptions. Patients treated with anti-VEGF therapy had fewer treatment prescriptions at index date compared with patients treated with laser therapy (1.9 [SD ± 3.1] vs. 2.8 [SD ± 3.3]). A significantly higher percentage (P = 0.029) of Hispanic patients (66.1% vs. 57.8%) were initiated on anti-VEGF therapy vs. laser therapy compared with Whites (19.5% vs. 22.3%) and African Americans (12.0% vs. 15.8%; Table 2).

DME = diabetic macular edema; VEGF = vascular endothelial growth factor.

![FIGURE 2](https://example.com/figure2.png)

DME = diabetic macular edema; VEGF = vascular endothelial growth factor.
Anti-VEGF therapy has been used increasingly to treat DME. According to our study, the use of anti-VEGF therapy increased by 86.3% from 2009 to 2011 (OR = 0.615, 95% CI = 0.390-0.968, P = 0.0074). Patients who had no visual impairment were 35.9% less likely than those with visual impairment to switch (OR = 0.641, 95% CI = 0.449-0.915, P = 0.0014). Male patients were 1.3 times more likely to switch compared with female patients (OR = 1.341, 95% CI = 1.053-1.709, P = 0.0175). Compared with White patients, Hispanic patients were 42% more likely to switch to a different therapy (OR = 1.415, 95% CI = 1.037-1.930, P = 0.0441). To further identify the switching behavior, a multinomial regression featuring a 3-level dependent variable was used (no switch, anti-VEGF to laser, and laser to anti-VEGF). Results showed that for anti-VEGF users, the odds of remaining on the same therapy was 1.1 times higher (OR = 1.094, 95% CI = 1.029-1.172, P = 0.0142) when there was a 1-unit increase in the number of unique prescriptions at index date. In addition, female anti-VEGF users were 1.4 times more likely to remain on the same therapy (OR = 1.441, 95% CI = 1.024-2.041, P = 0.0362). Because the majority of patients initiated with laser therapy, another post hoc logistic regression was conducted to examine switching among laser therapy starters. The results showed that among those patients who received laser surgery, patients who did not have visual impairment were 38.5% less likely to switch to anti-VEGF therapy (OR = 0.615, 95% CI = 0.390-0.968, P = 0.0357).

Discussion

Anti-VEGF therapy has been used increasingly to treat DME. According to our study, the use of anti-VEGF therapy increased by 86.3% from 2009 to 2011 (11.7% to 21.8%). Patients newly treated in 2011 were 2.4 times more likely to initiate anti-VEGF therapy compared with those in 2009. A similar trend of increasing anti-VEGF use among DME patients was also detected by Shea et al. (2000-2004). However, the most popular treatment for DME is still laser photocoagulation (84.9%), which is expected since the guidelines have recommended it as the first-line therapy for DME. It is possible that patients were started with laser therapy first and that anti-VEGF therapies were used only on patients who had no improvement after laser photocoagulation.

The number of injections patients received each year was low. Based on our findings, DME patients treated with anti-VEGF injections have less than 2 injections per eye each year, which is much lower than the frequency indicated in clinical trials. In practice, the number of injections was dependent on the vision acuity improvement of the patients. So, it is hard to compare real-world treatment frequency with clinical trials. Our number is lower than other claims data studies, as well. The mean number of injections per year based on studies by Curtis et al. (2012) and Johnston et al. (2013) were 4.3 and 5.8, respectively. However, the populations for these 2 studies were focused on Medicare AMD patients, who usually require more injections than younger DME patients. In addition, the use of ranibizumab in Texas Medicaid requires prior...
Treatment Patterns of Anti-Vascular Endothelial Growth Factor and Laser Therapy Among Patients with Diabetic Macular Edema

TABLE 4 Logistic Regression Results Examining Factors Related to Switching (N = 2,201)

<table>
<thead>
<tr>
<th>Covariates</th>
<th>Odds Ratio</th>
<th>95% CI</th>
<th>Wald X²</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.911</td>
<td>0.976 1.005</td>
<td>1.5787</td>
<td>0.2090</td>
</tr>
<tr>
<td>Male</td>
<td>1.341</td>
<td>1.053 1.709</td>
<td>5.6430</td>
<td>0.0175</td>
</tr>
<tr>
<td>African Americans</td>
<td>1.090</td>
<td>0.715 1.659</td>
<td>0.0363</td>
<td>0.8490</td>
</tr>
<tr>
<td>Hispanic</td>
<td>1.415</td>
<td>1.037 1.930</td>
<td>4.0510</td>
<td>0.0441</td>
</tr>
<tr>
<td>Others</td>
<td>1.028</td>
<td>0.501 2.111</td>
<td>0.1115</td>
<td>0.7384</td>
</tr>
<tr>
<td>CCI</td>
<td>0.988</td>
<td>0.951 1.026</td>
<td>0.3987</td>
<td>0.5278</td>
</tr>
<tr>
<td>Number of Rx</td>
<td>0.944</td>
<td>0.905 0.985</td>
<td>7.1821</td>
<td>0.0074</td>
</tr>
<tr>
<td>No visual impairment</td>
<td>0.641</td>
<td>0.449 0.915</td>
<td>6.0090</td>
<td>0.0142</td>
</tr>
</tbody>
</table>

Note: Model Fit Statistics: Likelihood ratio = 30.5252, df = 8, P = 0.0002.

This study has several limitations. First, claims data lack clinical detail on visual acuity outcomes. Although we identified patients who had visual impairment through ICD-9-CM codes and by using Supplemental Security disability status, some patients with less severe vision problems may not have been captured. The data also lacked detailed information such as the reason for visual impairment, so causality cannot be established. Second, we only collected data from 2008 to 2012. Although patients included in the study were treatment naïve 1 year prior to the index treatment, they may have received treatment in the prior years. Third, HCPCS codes for anti-VEGF injections may not have been coded correctly. Unclassified injection codes were used before specific codes were available. Although we identified bevacizumab and ranibizumab from other unclassified injections by the amount paid for each treatment, there could be misidentification. Fourth, although we included 333 anti-VEGF users in our study, ranibizumab users were a very small proportion (n = 18), which limits comparisons among anti-VEGF agents. However, given the cost differences (during the study time frame) between ranibizumab (approximately $1,200) and bevacizumab (approximately $50) and the fact that ranibizumab required prior authorization, the small sample size of ranibizumab is not surprising. Finally, the Texas Medicaid population provided unique insight into the Hispanic population with DME. However, this generalizability of the study may be limited, and results cannot be generalized to other populations or other state Medicaid programs.

Conclusions
A significant increase in the use of anti-VEGF injections occurred between 2009 and 2011. Although anti-VEGF treatment increased, only about one-third of patients had more than 3 injections in 1 year, and laser therapy is still the first line-treatment. Also, slightly over 40% of patients who initiated anti-VEGF treatment switched to laser therapy during the first year of treatment. Additional research should be conducted to determine factors associated with this high rate of switching.
Authors

SHAN JIANG, PhD, is Associate Scientist, Pharmerit International, Bethesda, Maryland, and was a Graduate Student at the University of Texas at Austin at the time of this study. JAMIE C. BARNER, PhD, is Professor, and CHANHYN PARK, MS, and YOU-LI LING, MS, are Graduate Students, Health Outcomes and Pharmacy Practice Division, College of Pharmacy, The University of Texas at Austin.

AUTHOR CORRESPONDENCE: Jamie C. Barner, PhD, Health Outcomes and Pharmacy Practice Division, College of Pharmacy, The University of Texas at Austin, PHR 3.210B, Mail Code A1930, Austin, TX 78712-0124. Tel.: 512.471.5612; Fax: 512.471.8762; E-mail: jbarner@austin.utexas.edu.

DISCLOSURES

Jiang, Barner, Park, and Ling declare no conflict of interest or financial interest in any therapy discussed in this article, including employment, honoraria, consultancies, expert testimony, patents, and royalties.

Study concept and design were primarily contributed by Jiang, along with Barner and assisted by Park and Ling. Data were collected by Jiang, Ling, Park, and Barner and interpreted by Jiang, Barner, Park, and Ling. The manuscript was primarily written and revised by Jiang, along with Barner, Park, and Ling.

REFERENCES